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1. Intro


• black holes in gauged supergravity 

• properties of BPS configurations in AdS4 

2. On shell action and Mass


• holographic renormalization  

• BPS black hole or domain wall flow? 

3. Thermodynamics and phase transitions


• Phase space at T=0 and a QCP 

• Phase space at finite T 



Motivations

Black holes as a Quantum Gravity Lab

• Charged Black holes and branes constituents

➡ Microscopic entropy


• Holographic dual theories

➡ Phase transitions

Two main areas of investigation:

1. String/M-theory BHs

2. AdS black holes



Motivations

Gauged Supergravity

The gauging introduces a potential that behaves as a 
cosmological constant of which AdS  is a supersymmetric 
vacuum


A Supergravity theory with gauging has charged particles 
and the vacuum may break supersymmetry spontaneously. 
New dynamics?


What’s the String/M-theory interpretation of a black hole in a 
Minkowski vacuum of a gauged SUGRA?

Holography requires to go beyond Minkowski asymptotics

V (ϕ) ̸= 0 , ∂ϕV |∞ = 0



Supersymmetric solutions in N=2 SG

Vacua from String/M-theory

Interpolating geometries  
AdSd x Sd to flat space or another SUSY space



Static background, abelian and scalar fields
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BPS black holes

BPS black holes as attractor points

AdS2 � S2 R1,3

AdS4 BPS black holes as holographic RG flows

Translates radial equations in algebraic relations that capture 
the physics of the (dual) theory

AdS2 � S2 AdS4

Interpolating geometry + scalar fields

∂i|Z(p,q, zj, z̄j)| = 0

[Cacciatori, Klemm ‘09]

[Ferrara, Gibbons, Kallosh,  
Strominger, ’95,’96]



Introduces charged scalars

Scalar potential
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• possible AdS geometries

• fermionic fields are charged

• em - duality invariance is broken

Gauged Supergravity



The gauging is specified by constant moment maps

For this particular choice the scalar potential is 

•

Px
� = �x

�P0
� = 0

U(1)R � SU(2)R � QMIt involves the abelian isometry 

line bundle Q � �Q = Q+ g A�
��P

0
�

SU(2) bundle �x � ��x = �x + g A� Px
�

Scalar fields are still neutral and field strenghts abelian 

Vg = gīȷDiLDȷ̄L̄− 3LL̄

L = gPx
MVM

R-symmetry gauging for black holes



R-symmetry gauging for black holes

Not only BHs are solution of the Euler-Lagrange equations, but, when the 
system preserves some supersymmetry, it obeys first order equations. 

BPS first order flow is driven by the superpotential  

WBH = eU |Z � ie2(��U)L|

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + e2ψ(r)dΩ2)

Z = QMVM (zi, z̄ ı̄)

It is in fact a Hamilton-Jacobi flow with 
the Hamiltonian constraint:

 The field equations satisfied by the BPS back hole are

U � = �eU�2�Re(e�i�Z) + e�U Im(e�i�L)

�� = 2e�U Im(e�i�L)

żi = �ei�gī�(eU�2�D̄�̄Z̄ + ie�U D̄�̄L̄)

⟨G,Q⟩ = −1



SUSY structure at the horizon

- Killing spinor equations at AdS2 x S2

show a topological twist at the horizon for 
the S2 factor  

- The Killing spinor does not depend on the 
S2 coordinates

[de Wit, Van Zalk, ’11]

�̂a�i
± � 1

2�AdS
�ij�a�j± = 0 AdS2

�̂â�i
± +

1

2
V i

â j�
j
± = 0 S2

No more Bertotti-Robinson geometry, only N=1 SUSY

N = 1
AdS2 � S2

g = 0

g �= 0

�i|Z| = 0

�i
|Z|
|W| = 0

N = 2

W = gPx
MVM Z = q�L� � pMM�



BPS AdS4  black holes

Finite horizon SUSY Solution requires:

• magnetic charge 
• or magnetic gauging 

AdS2xS2                 mAdS4  
1/4 BPS states

[Klemm, Vaughan]

AdS2 � ��

[Cacciatori, Klemm ‘09]

[Dall’Agata, AG, Hristov, Vandoren]
[Halmagyi, Erbin, Vanel]

[Chow, Compère]
[Klemm, Marrani, Petri, Rabbiosi, Santoli..]

Extensions/applications
• Microstate counting 
• Holography 
• Hypermultiplets 

• 10-11D Uplift 
[Tomasiello, Katmadas]

[Chimento, Faedo, Klemm, Nozawa, Toldo, Monten]

[Benini, Hristov, Zaffaroni]

gΛp
Λ − g̃ΛqΛ = κ

[Meessen, Ortin] [Halmagyi, Petrini, Zaffaroni]



Each of the fixed point is holographically a superconformal fixed point.

The black hole geometry is a flow in parameter space. 

• What is the minimization/maximization dual to the  

above extermination in supergravity?

➡ Hristov, Benini, Zaffaroni, 2015


• Proposal: two point function à la Intriligator

➡ Amariti, AG 2015

AdS2 � S2 AdS4

�i|Z| = 0 �i|W| = 0

Dual SCFT 

in 3d -

no anomalies

Holography at maximally symmetric points



Holography at maximally symmetric points

Attractor mechanism for AdS4 and AdS2�i|Z| = 0

�i|W |
��
{qu�, zi�, z̄i�} = 0 �ku(q�), V(z�, z̄�)� = 0

The BPS flow starts on the AdS4 vacuum by effect of the background 
magnetic fields:

AdS4

g�m� = �1

AdS2 � S2
g = 0

g �= 0

unconstrained

�i|Z| = 0

�i
|Z|
|W| = 0

1

4
� BPS

N = 2

N = 1

N = 2

�i|W| = 0

�i|W| = 0

(no more a vacuum solution)



Study of Phase space of black branes in AdS4

Applications to holography and 
dual 3D QFT



Black hole physics can teach about strongly coupled field theories

Overview

 Investigate quantum critical phases of strongly coupled solid state systems

 Hawking-Page transition for a black hole in  
anti de Sitter spacetime [’83]

Holographic interpretation as confinement/de-
confinement phase transition 

[Witten ’98]

Goal: analytic holographic studies 
of black branes in AdS4

[Caldarelli, Christodoulu,  
Papadimitriou, Skenderis, ’16][Hristov, Vandoren, Toldo, ‘13]

Branches of small/large black holes
Black branes phase transition in temperature



Finite temperature solutions in the t3 model

General metric à la Duff-Liu

ds2 = −eKf(r)dt2 + e−K

(
dr2

f(r)
+ r2dΩ2

(2)

)

[Klemm, Vaughan, Toldo, Vandoren, ’12]

It can be extended to generic electric or magnetic gaugings, and for electric 
or magnetic solutions

e�K(r) =
�

H0(H1)3 , f(r) = 1 +
c1

r
+

c2

r2
+ ��2

AdSe�2K ,

H� = 1 +
Q�

r
, �AdS =

��
2g1/4

0 g3/4
1

33/4

��1

This is an equivalent parametrization, and its relation with the BPS 
formulation is given by

eψ(r) ≡ r
√
f(r) , eU(r) = eK(r)/2f(r)

[AG, Toldo, ‘14]



• One recovers these first order equation from a squaring à la BPS of the 
action!


• First order equations are easier to solve than the second order equations of 
motion.

Finite temperature solutions in the t3 model

17
[AG, Toldo, ’14]

satisfy the first order equations

for a superpotential

zi� = �eK/2

r
gij�jWm

(r e�K/2)� = Wm

The solution has a real scalar and gauge fields 

z(r) =
3�0

�1

Q1 + r

Q0 + r
, A� = ��AdS

g̃�

4

�
c2 + Q�(Q� � c1) cos � d�

Wmag = Im
(
gΛIΛΣ

∞ MΣ

)



Black holes or domain walls?

18

Solution with magnetic charges admits an extremal BPS limit, when the 
function f(r) has a double pole  

giving additional restrictions on the parameters c1 and c2. 
The 1/4-BPS solution satisfies the Supersymmetric first order upon further 
constraint on the charges

r2f0(r) =
1

�AdS2

(r2 � r2
h)2

On-shell, the magnetic superpotential and the BPS one are identical functions 
of r, as expected

BPS black holes or supersymmetric domain walls ?

e−ψ(r)W(r) ≡ −ℓAdSWmag(r)

gΛp
Λ − g̃ΛqΛ = κ



Black holes or domain walls?

There is an interesting characteristic of the BPS solutions that suggests they 
might be closely related to domain walls.  For black brane, the 
supersymmetric constraint is simply

so the zero charge limit is well defined, and independent of g. The first order 
flow then reduces to

pΛgΛ = 0 ,

corresponding to the metric ansatz of a domain wall

U �(r) = e�U |L| ,

��(r) = 2e�U |L| ,

żi = �2gī�e�U��̄|L|

ds2Q=0 = e−2Udr2 + e2U
(
−dt2 + dx2 + dy2

)



Holographic renormalization

Canonically normalized scalar field and Lagrangian

S =

� �
�gd4x
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ℓ−2
AdS = g2

√
4

27
ξ0ξ31

−9/4 ≤ m2
ϕℓ

2
AdS ≤ −9/4 + 1

Dual operator conformal dimensions are ∆− = 1 ∆+ = 2

allows for mixed boundary conditions, both modes of the scalar fields are 
normalizable.

corresponding to a scalar of mass 

we are in the window

m2
��2AdS = �2



Choice of canonical radius gtt ∼ ℓ−2
AdS(c+ g2r2 +O(r−1))

the metric asymptotes the AdS boundary as 

ds2 ∼ dr̃2 + e2r̃/ℓh(0)ij(x)dx
idxj

 the field expansion in terms of the radial coordinate

ϕ ∼ e−∆−r̃/ℓ(ϕ−(x) + ...) + e−∆+r̃/ℓ(ϕ+(x) + ...)

r

ℓ
= er̃/ℓ

Multitrace deformation read by:  ϕ+ = λϕ2
− λ =

ϵ√
6

Only two points of a larger class found?

Holographic renormalization



Holographic renormalization

Conditions for a well defined variational principle is that the superpotential has 
to be uniquely dependent on the value of lambda 

Ict,can =

�

�M0

d3x
�

h (W (�) + W0R)

V (φ) =
1

2

(
∂φW

2 − 3

2
W 2

)

Counterterm action 

The Hamilton Jacobi equations imply the superpotential constraint  

A 1-parameter class of superpotential exists for the considered Lagrangian. 
They differ at cubic order in the fields expansion

W�(�) = �2
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�
1 +

�2

4
+

�

6
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6
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�

�(�) , �+ = ��2
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[Papadimitriou, ‘07]



Holographic renormalization

First order flow for the real scalar field 

�� =
�AdS

r
eK/2��Wel,mag(�) ,

(re�K/2)� = �1

2
�AdSWel,mag(�)

the electric solution has  

while for the magnetic solution   
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This fixes uniquely the counterterm action, from which one can compute the  
mass of the solution as

Mass = −c1
2



Domain wall as reference background 

The computation of the mass in AdS can be obtained by subtraction of a 
reference background.
Holographic renormalization allows to check that the correct background for 
these solutions is the domain wall solutions

ds2 = e−Kr2
(
−dt2 + dx2 + dy2

)
+ eK

dr2

r2

It is obtained from the black brane when 

And it corresponds to the choice of parameters

c1 = 0 c2 =
Q2

1

2

(
1 + 6Q2

1

)

So it would correspond to a “zero mass” system, as given by the holographic 
renormalization.

f(r) = r2e−2K



Relations with String/M-theory

N=2 R-symmetry gauged supergravity with prepotential

even simpler setup, one scalar field, two vectors
general T=0 solutions, might not be BPS

N=8 4dim Supergravity with SO(8) gauging 

dual to ABJM 

truncation to U(1)4 ∈ SO(8)

M-theory on AdS4 x S7

effective theory:

F (XΛ) = 2i
√
X0X1X2X3

Known embedding in N=8 gives BF instabilities
[Donos, Gauntlett, Pantelidou, ’11-‘12]



Relations with String/M-theory

Dual operator conformal dimensions

The solutions of electric and magnetic black 
holes are dual to marginal multitrace 
deformations 

N=8 SUGRA boundary term required  
[Freedman et al. ‘16]

�SSUSY � �

�
O3

�� = 1 , �+ = 2

ϕ+ = λϕ2
−

construction of Killing spinors and geometry from bilinear forms

Instead of an M-branes constructions, D-branes uplift could yield a 
clearer understanding

Uplift solutions to String Theory in a generic N=2 setup

Supersymmetry at the boundary of AdS4



Thermodynamic ensemble

Euclidean path integral formulation of gravity at the semiclassical level:
 [Gibbons, Hawking ’76 , York, ’86]

The partition function defines a  free energy, which, within a saddle point 
approximation, corresponds to the Euclidean on-shell action

Z =

�
d[gµ� ]d[�] exp{iIe[gµ� , �]}

��F = ln Z = iIe[g
�, ��]

What are the thermodynamic variables?



Electric configuration: the bare on-shell action corresponds to the 
free energy for the grand canonical ensemble F(T, χ)

Magnetic configuration: the bare on-shell action corresponds to the 
free energy for the grand canonical ensemble F(T, p)

Adding boundary terms on the action changes the boundary conditions.  
In Supergravity, that corresponds to an electric-magnetic duality rotation

F (T, p�) = M � TS

F (T, �) = M � TS � q���

Thermodynamic ensemble



Good singularity

Planar black holes compete with a thermal gas solution
Black branes in the limit where the black 
hole coincide with the singularity [Gubser,2000]

gtt(rh) = 0 rh � rs

gxx = gyy =
�

(r � 3b)(r + b)3

Family of black branes with horizon rh = 3b + �

|B| = 8
�

2b2 +
(6b2 + �2)��

2b
+ O(�2)

Horizon condition gtt(3b + �) = 0

The electric charge of the solution is     q = 0



Good singularity
Define a thermal gas as the subset in parameter space where 

|B| = 8
�

2b2 , � finite

Because of this relation the dependence on χ drops from the metric:

Thermodynamic variables (B, χ, T) 

In particular, temperature T and electric potential χ are moduli of the 
thermal gas solution

ds2
TG = e�

�
6�(r2 + 6br + 21b2)dt2 � e

�
6�dr2(r2 + 6br + 21b2)�1 +

�e
�

6�(r � 3b)2(dx2 + dy2) ,

e
�

6� =

�
r + b

r � 3b

�3/2

.

Possible resolution of the singularity from string theory



Black brane Thermal gas

Fbb = Mbb � TSbb + qbb�bb

Mass M =
B2 � q2

4b

dFbb = �SbbdT + qbbd�bb + mbbdB

bTG = +2� 7
4

�
|B|

FTG = MTG =
B2

4bTG
= 2� 1

4 |B| 3
2

mbb =
∂Fbb

∂B

∣∣∣
χ,T

= 3

√
3

2

B

|χ|

dFTG = mTGdB

Thermodynamic potential

Qualitative different magnetization

mTG = 32−
5
4

√
|B| sgn(B)

Free energy depends only on the 
magnetic charge B



Phase space, T=0

∆F = Fbb − FTG =
27B2 + 32χ4

24
√
6|χ|

− 2−
1
4 |B| 32

|B∗| =
4
√
2

3
χ2

∆F = 3

√
3

2

(B −B∗)2

|χ| +O
(
(B −B∗)

3
)

At T=0 it is possible to solve analytically for the free energy in terms 
of the thermodynamic variables

We find a critical point 
for every value of χ 

The QCP is second 
order

2 4 6 8 10
p1

0.05

0.10
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0.20

0.25

0.30

0.35
DeltaF



Comments on the BPS point

BPS solution obtained by setting

BPS black holes in ungauged supergravity are stable. They minimize 
the mass in the parameter space.

In the canonical ensemble the on-shell action at zero temperature is the 
mass, so it is consistent

We work instead in a mixed ensemble, and we find a phase transition which 
thus seems to be related to the choice of different thermodynamical 
ensemble. No contradiction, in principle.

M ≥ |Z|

F (T = 0) = M Fextremized ⇔ Mextremized

gtt = eK(r2 − r2h)
2 , gΛp

Λ − gΛqΛ = 0



T > 0 phase space
Low temperature

ΔF

B
Bc(T=0)

TG
BB

T

B



T > 0 phase space

Bc(T=0)

TG
BB

T

B

High temperature

ΔF

B



Bounds in parameter space

Temperature 

Horizon constraint
4�T =

(�3b + rh)1/2(3(b + rh)2 � 8�2)

(b + rh)3/2

B2 = 2(b + rh)
�
b(b2 � 6�2) + 2(b2 + �2)rh + br2

h

�

B2 B2

rh rh

χ=1,T=1 χ=1,T=1.04



Quantum  criticality emerges at the locus B= Bc(χ)

Information on the nature of the critical point from spectrum of the dual theory 
[Gursoy, Kiritsis, Nitti ’07]

Holographically induce fluctuations of the corresponding bosonic bulk field 
on the background

Scalar fluctuations of the background: acting with a bosonic operator on 
vacuum, O∆

Effective action for a scalar perturbation

Sfluc =

�
d4x

�
�ggµ��µ����� =

=

�
drd3x

�
�g

�
grr|�r��(r)|2 + �2g00|��(r)|2

�

m2 = 0 , φ(r, x) = ξ(r)e−iωt+k⃗·x⃗

Eigenvalue problem for normalizable modes both in the UV and IR (singularity)

Analysis of QCP



Analysis of QCP

We checked that there is no confinement/deconfinement phase transition

The thermal gas has no normalizable modes for arbitrary small ω: 
gapped system

ξ0 ∼ ϵ−1 ϵ = r − rs

Crucial constraint on the TG: releasing the relation                           introduces 
normalizable modes!!

|B| = 8
√
2b2

Black branes have QNM spectrum discrete frequencies, the lowest |ω|~T

In the Tg0 limit, the spectrum of QNM accumulates at the origin producing 
a branch-cut as expected from a holographic perspective for retarded Green’s 
functions in a strongly interacting CFT at zero temperature

Lowering the temperature one can reach arbitrary small energies |ω|~ε, with 
separations also |Δω|~ε.

gapless system



semi-local quantum criticality
[Iqbal, Liu, Mezei, ‘11]

“Understanding phases of matter for which there is no quasiparticle 
description”

Interpretation of black branes horizons as a universal fractionalized 
intermediate-energy phase  (due to instabilities) 
energy scale ~ order of the chemical potential

finite spatial correlation length, but an infinite correlation time  
nontrivial scaling behavior in the time direction  
nonzero entropy density 

goal: semi-local quantum liquid arises universally from lower energy 
phases through deconfinement  g fractionalization



semi-local quantum criticality

ds2 =
1

�2�/(D�2)

�
�dt2

�2
+ �2

d�2

�2
+ dxidxi

�
η geometries, conformal to AdS2xS2

Thermal gas defined with T as a modulus, not only at T=0 !

Supersymmetric infrared region?

t � �t , xi � xi

� � ��
ds2 � ��2�/(D�2)ds2

If the q-charge is zero, the BPS condition q - 3B = 0 cannot be satisfied!

[Iqbal, Liu, Mezei, ‘11]
[Donos, Gauntlett, Pantelidou, ‘12]



semi-local quantum criticality

Finite entropy density as T g0, related to system instabilities

possibly associated with new branches of black hole 
solutions appearing at finite temperature, 
corresponding to new phases 

[Iqbal, Liu, Mezei, ‘11]
[Donos, Gauntlett, Pantelidou, ‘12]

Obtained from higher dimensions by reduction of the product of AdS or 
Lifshitz geometries with flat directions. 

 Investigate the full space at finite temperature



• Analytic study of black holes in holographic 
systems possible in gauged Supergravity

• Presence of a QCP between a gapped and a gapless 
phase

• Extend the study to quantum critical region

conclusions  
and  

outlook

• An N=2 supersymmetric field theory dual?

• Existence of a good singularity solution whose origin might 
me clarified by a string theory uplift

• clarify the relations with intermediate phases of quantum 
critical systems



—  Thank you!


